谷歌开源NSL框架:利用数据间关系训练神经网络,能生成对抗样本
ccwgpt 2024-09-13 16:01 39 浏览 0 评论
晓查 发自 凹非寺
量子位 出品 | 公众号 QbitAI
今天,谷歌推出了新开源框架——神经结构学习(NSL),它使用神经图学习方法,来训练带有图(Graph)和结构化数据的神经网络,可以带来更强大的模型。
现在,通过TensorFlow就能获取和使用。
NSL有什么用?过去我们使用单独的图片来训练计算机视觉神经网络,这些训练样本之间彼此是孤立的,然而样本之间包含着丰富的关系信息。
如果用上这些数据的结构化信息,就能实现更高的模型精度,或者用更少的样本来训练模型,特别是在标记样本数量相对较少的情况。
另外,NSL也能用于抵御对抗攻击,因为对抗样本往往是在原来样本上做的一种微扰,利用这一层关系,可以提高模型在对抗攻击下的鲁棒性。
谷歌表示,这种NSL技术是通用的,可以应用于任意神经架构,包括前馈神经网络、CNN和RNN。NSL可以为计算机视觉模型、NLP训练模型,并在医疗记录或知识图谱等图形化数据集上进行预测。
谷歌已经将这项技术用于研究中,在今年2月发表的一篇学习图像语义嵌入的文章中,谷歌用它来提高模型的精度。
NSL原理
NSL用到了训练样本之间的结构化信号,它通常用于表示标记或未标记的样品之间的关系或相似性。
这种结构化信号有时是以图的方式显式地包含在数据集中,有时是通过人为构造出来的,前面说到的用微扰生成对抗攻击样本,就是一种隐式表达结构化信号的方式。
如何让结构化信号包含在神经网络之中呢?2018年,谷歌在提交的一篇关于“神经图学习”的论文中,构造了一种考虑数据结构关系的损失函数。
这个损失函数不仅包含常规的监督学习损失项,还引入了一项最近邻损失,如下图所示。通过在训练中让后一项最小化,来保持来自同一结构的输入之间的相似性。
使用方法
在TensorFlow中使用NSL,首先需要安装虚拟环境,设置完虚拟环境后,用pip安装:
pip install --upgrade neural_structured_learning
使用NSL,让我们用结构化信号构建模型变得简单而直接。对于给定图(显式结构)和训练样本的情况,NSL提供了一个工具来处理这些样本并将其组合到TFRecords中进行接下来的训练:
python pack_nbrs.py --max_nbrs=5 \ labeled_data.tfr \ unlabeled_data.tfr \ graph.tsv \ merged_examples.tfr
对于用图表示的结构信号的数据,调用NSL中的API,只需添加不超过5行代码就可以训练一个新的神经网络模型。
import neural_structured_learning as nsl # Create a custom model — sequential, functional, or subclass. base_model = tf.keras.Sequential(…) # Wrap the custom model with graph regularization. graph_config = nsl.configs.GraphRegConfig( neighbor_config=nsl.configs.GraphNeighborConfig(max_neighbors=1)) graph_model = nsl.keras.GraphRegularization(base_model, graph_config) # Compile, train, and evaluate. graph_model.compile(optimizer=’adam’, loss=tf.keras.losses.SparseCategoricalCrossentropy(), metrics=[‘accuracy’]) graph_model.fit(train_dataset, epochs=5) graph_model.evaluate(test_dataset)
这种方法可以使用较少标记的数据进行训练,而不会损失太多精度,一般不超过原始监督数据的10%甚至1%。
然而大部分数据是没有图作为显式结构信号的,这种情况应该怎么办?谷歌在NSL中提供了从原始数据构建图形的工具,NSL通过API构造对抗样本,以此作为隐式结构信号。
import neural_structured_learning as nsl # Create a base model — sequential, functional, or subclass. model = tf.keras.Sequential(…) # Wrap the model with adversarial regularization. adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, adv_step_size=0.05) adv_model = nsl.keras.AdversarialRegularization(model, adv_config) # Compile, train, and evaluate. adv_model.compile(optimizer=’adam’, loss=’sparse_categorical_crossentropy’, metrics=[‘accuracy’]) adv_model.fit({‘feature’: x_train, ‘label’: y_train}, epochs=5) adv_model.evaluate({‘feature’: x_test, ‘label’: y_test})
同样添加代码不超过5行!这种通过微扰添加对抗样本的训练模型,已被证明可以抵御恶意攻击。而没有添加对抗样本的模型在攻击下准确度会损失30%。
传送门
TensorFlow介绍页面:
https://www.tensorflow.org/neural_structured_learning/
代码地址:
https://github.com/tensorflow/neural-structured-learning
— 完 —
诚挚招聘
量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。
量子位 QbitAI · 头条号签约作者
?'?' ? 追踪AI技术和产品新动态
相关推荐
- 盲盒小程序背后的技术揭秘:如何打造个性化购物体验
-
在2025年的今天,盲盒小程序作为一种新兴的购物方式,正以其独特的魅力和个性化体验吸引着越来越多的消费者。这种将线上购物与盲盒概念相结合的应用,不仅为消费者带来了未知的惊喜,还通过一系列技术手段实现了...
- 小程序·云开发已支持单日亿级调用量,接口可用率高达99.99%
-
2019-10-1914:1210月19日,由腾讯云与微信小程序团队联合举办的“小程序·云开发”技术峰会在北京召开。会上,微信小程序团队相关负责人表示“小程序·云开发”系统架构已经支持每天亿级别的...
- 程序员副业开启模式:8个GitHub上可以赚钱的小程序
-
前言开源项目作者:JackonYang今天推荐的这个项目是「list-of-wechat-mini-program-list」,开源微信小程序列表的列表、有赚钱能力的小程序开源代码。这个项目分为两部分...
- 深度科普:盲盒小程序开发的底层逻辑
-
在当下的数字化浪潮中,盲盒小程序以其独特的趣味性和互动性,吸引着众多消费者的目光。无论是热衷于收集玩偶的年轻人,还是享受拆盒惊喜的上班族,都对盲盒小程序情有独钟。那么,这种备受欢迎的盲盒小程序,其开发...
- 微信小程序的制作步骤
-
SaaS小程序制作平台,作为数字化转型时代下的创新产物,不仅将易用性置于设计的核心位置,让非技术背景的用户也能轻松上手,快速制作出功能丰富、界面精美的小程序,更在性能和稳定性方面投入了大量精力,以确保...
- 携程开源--小程序构建工具,三分钟搞定
-
前言今天推荐的这个项目是「wean」,一个小程序构建打包工具。在wean之前,大量小程序工具使用webpack进行打包,各种loader、plugin导致整个开发链路变长。wean旨在解...
- 校园小程序的搭建以及营收模式校园外卖程序校园跑腿校园圈子系统
-
校园小程序的架构设计主要包括云端架构和本地架构两部分。云端架构方面,采用Serverless架构可以降低技术门槛,通过阿里云、腾讯云等平台提供的云服务,可以实现弹性扩容和快速部署。例如,使用云数据库、...
- 盲盒小程序开发揭秘:技术架构与实现原理全解析
-
在2025年的今天,盲盒小程序作为一种结合了线上购物与趣味性的创新应用,正受到越来越多用户的喜爱。其背后的技术架构与实现原理,对于想要了解或涉足这一领域的人来说,无疑充满了神秘与吸引力。本文将为大家科...
- 月活百万的小程序架构设计:流量暴增秘籍
-
从小程序到"大"程序的蜕变之路当你的小程序用户量从几千跃升至百万级别时,原有的架构就像一件不合身的衣服,处处紧绷。这个阶段最常遇到的噩梦就是服务器崩溃、接口超时、数据丢失。想象一下,在...
- 认知智能如何与产业结合?专家学者共探理论框架与落地实践
-
当前,以大模型为代表的生成式人工智能等前沿技术加速迭代,如何将认知智能与产业结合,成为摆在各行各业面前的一个问题。论坛现场。主办方供图7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议在...
- 现代中医理论框架
-
...
- 认知行为(CBT)中的ABC情绪理论
-
情绪ABC理论是由美国心理学家阿尔伯特·艾利斯(AlbertEllis1913-2007)创建的理论,A表示诱发性事件(Activatingevent),B表示个体针对此诱发性事件产生的一些信...
- 说说卡伦霍妮的理论框架,对你调整性格和人际关系,价值很大
-
01自在今天我主要想说下霍妮的理论框架。主要说三本书,第一本是《我们时代的神经症人格》,第二本是《我们内心的冲突》,第三本是《神经症与人的成长》。根据我的经验,三本书价值巨大,但并不是每个人都能读进去...
- 供应链管理-理论框架
-
一个最佳价值的供应链,应该是一个具有敏捷性、适应性和联盟功能(3A)的供应链,其基本要素包括战略资源、物流管理、关系管理以及信息系统,目标是实现速度、质量、成本、柔性的竞争优势。篇幅有...
- 微信WeUI设计规范文件下载及使用方法
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。WeUI是一套同微信原生视觉体验一致的基础样式库,由微信官方设计团队为微信Web开发量身设计,可以令用户的使用感知...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- scrapy框架 (52)
- beego框架 (42)
- java框架spring (43)
- grpc框架 (55)
- 前端框架bootstrap (42)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)