Quartz触发Trigger及状态转换(quartz 多个trigger)
ccwgpt 2024-09-18 12:26 34 浏览 0 评论
前言
分布式定时任务框架Quartz的定时任务依赖触发器Trigger来触发执行,那么Trigger如何被触发,在整个触发流程中,Trigger的状态如何变化,本文将对这部分内容进行详细分析。
Quartz框架的基本概念和基本使用可以参考翻翻Quartz框架的旧账。
本文基于Quartz的2.3.2版本展开分析。
正文
先回顾一下QuartzSchedulerThread的作用,其是由QuartzScheduler持有的 调度线程,在QuartzScheduler创建出来并被调用start() 方法后,QuartzSchedulerThread就会开始运行,会不断的去判断哪些Trigger到点需要触发了,需要触发的Trigger就会被从ThreadPool中分配一个线程,然后执行Trigger关联的JobDetail。
具体的整套逻辑,全部在QuartzSchedulerThread的run() 方法中,下面一起来看一下。
(下面方法比较长,分支也比较多,所以重点看有注释的部分,再结合后面的补充说明进行理解)
@Override
public void run() {
int acquiresFailed = 0;
while (!halted.get()) {
try {
synchronized (sigLock) {
while (paused && !halted.get()) {
try {
sigLock.wait(1000L);
} catch (InterruptedException ignore) {
}
acquiresFailed = 0;
}
if (halted.get()) {
break;
}
}
if (acquiresFailed > 1) {
try {
long delay = computeDelayForRepeatedErrors(qsRsrcs.getJobStore(), acquiresFailed);
Thread.sleep(delay);
} catch (Exception ignore) {
}
}
// 从ThreadPool中获取当前可用线程数量
// 若没有可用线程则阻塞直到有可用线程
int availThreadCount = qsRsrcs.getThreadPool().blockForAvailableThreads();
if(availThreadCount > 0) {
List<OperableTrigger> triggers;
long now = System.currentTimeMillis();
clearSignaledSchedulingChange();
try {
// 获取下一次触发时间在30分钟内的Trigger
// 这里的步骤可以分解如下
// 1. 从qrtz_locks表获取TRIGGER_ACCESS锁
// 2. 从qrtz_triggers表获取触发时间在30分钟内且状态是WAITING的Trigger
// 3. 遍历每一个步骤2拿到的Trigger
// 4. 从qrtz_job_details表查询出Trigger对应的JobDetail
// 5. 如果JobDetail不允许并发执行则判断一下当前JobDetail是否已经由另外一个Tragger执行
// 若已经由另外一个Trigger执行则当前Trigger本次不执行
// 6. 将确定要执行的Trigger在qrtz_triggers表中的状态设置为ACQUIRED
// 7. 将确定要执行的Trigger插入qrtz_fired_triggers表且状态为ACQUIRED
// 8. 继续遍历步骤2拿到的Trigger直至全部遍历完
// 9. 释放TRIGGER_ACCESS锁
// 10. 返回所有符合条件的Trigger
triggers = qsRsrcs.getJobStore().acquireNextTriggers(
now + idleWaitTime, Math.min(availThreadCount, qsRsrcs.getMaxBatchSize()), qsRsrcs.getBatchTimeWindow());
acquiresFailed = 0;
if (log.isDebugEnabled())
log.debug("batch acquisition of " + (triggers == null ? 0 : triggers.size()) + " triggers");
} catch (JobPersistenceException jpe) {
if (acquiresFailed == 0) {
qs.notifySchedulerListenersError(
"An error occurred while scanning for the next triggers to fire.",
jpe);
}
if (acquiresFailed < Integer.MAX_VALUE)
acquiresFailed++;
continue;
} catch (RuntimeException e) {
if (acquiresFailed == 0) {
getLog().error("quartzSchedulerThreadLoop: RuntimeException "
+e.getMessage(), e);
}
if (acquiresFailed < Integer.MAX_VALUE)
acquiresFailed++;
continue;
}
if (triggers != null && !triggers.isEmpty()) {
now = System.currentTimeMillis();
long triggerTime = triggers.get(0).getNextFireTime().getTime();
long timeUntilTrigger = triggerTime - now;
// 所有Trigger中最先会触发的Trigger的触发时间如果距离当前大于2ms则等待
// 直到最先会触发的Trigger的触发时间距离当前小于2ms
while(timeUntilTrigger > 2) {
synchronized (sigLock) {
if (halted.get()) {
break;
}
if (!isCandidateNewTimeEarlierWithinReason(triggerTime, false)) {
try {
now = System.currentTimeMillis();
timeUntilTrigger = triggerTime - now;
if(timeUntilTrigger >= 1)
sigLock.wait(timeUntilTrigger);
} catch (InterruptedException ignore) {
}
}
}
if(releaseIfScheduleChangedSignificantly(triggers, triggerTime)) {
break;
}
now = System.currentTimeMillis();
timeUntilTrigger = triggerTime - now;
}
if(triggers.isEmpty())
continue;
List<TriggerFiredResult> bndles = new ArrayList<TriggerFiredResult>();
boolean goAhead = true;
synchronized(sigLock) {
goAhead = !halted.get();
}
if(goAhead) {
try {
// 将Trigger进行fire
// 但是这里并不会执行对应的任务逻辑
// 对应的步骤可以分解如下
// 1. 从qrtz_locks表获取TRIGGER_ACCESS锁
// 2. 遍历每一个需要执行的Trigger
// 3. 将qrtz_fired_triggers表中需要执行的Trigger的状态设置为EXECUTING
// 4. 将Trigger对象的下一次执行时间nextFireTime更新
// 5. 如果Trigger执行的JobDetail不允许并发执行
// 将Trigger对象的状态更新为BLOCKED
// 否则将Trigger对象的状态更新为WAITING
// 6. 如果Trigger执行的JobDetail不允许并发执行
// 将JobDetail关联的其它Trigger在qrtz_triggers表里的状态更新
// 如果是WAITING或ACQUIRED则更新为BLOCKED
// 7. 如果Trigger是最后一次执行则将Trigger对象的状态更新为COMPLETE
// 8. 将Trigger对象更新回qrtz_triggers表
// 9. 基于这个Trigger创建一个TriggerFiredResult并添加到集合
// 10. 继续遍历下一个需要执行的Trigger直至遍历完毕
// 11. 释放TRIGGER_ACCESS锁
// 12. 此时得到了所有执行的Trigger对应的TriggerFiredResult的集合
// 上面步骤执行完后所有fire的Trigger在qrtz_fired_triggers表中的状态是EXECUTING
// 在qrtz_triggers表中的状态可能是WAITING,BLOCKED或COMPLETE
// 但是此时Trigger对应的JobDetail实际是还没有被执行的
List<TriggerFiredResult> res = qsRsrcs.getJobStore().triggersFired(triggers);
if(res != null)
bndles = res;
} catch (SchedulerException se) {
qs.notifySchedulerListenersError(
"An error occurred while firing triggers '"
+ triggers + "'", se);
for (int i = 0; i < triggers.size(); i++) {
qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
}
continue;
}
}
// 遍历每一个执行的Trigger对应的TriggerFiredResult
for (int i = 0; i < bndles.size(); i++) {
TriggerFiredResult result = bndles.get(i);
TriggerFiredBundle bndle = result.getTriggerFiredBundle();
Exception exception = result.getException();
if (exception instanceof RuntimeException) {
getLog().error("RuntimeException while firing trigger " + triggers.get(i), exception);
qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
continue;
}
if (bndle == null) {
qsRsrcs.getJobStore().releaseAcquiredTrigger(triggers.get(i));
continue;
}
JobRunShell shell = null;
try {
// 基于TriggerFiredResult创建JobRunShell
shell = qsRsrcs.getJobRunShellFactory().createJobRunShell(bndle);
shell.initialize(qs);
} catch (SchedulerException se) {
qsRsrcs.getJobStore().triggeredJobComplete(triggers.get(i), bndle.getJobDetail(), CompletedExecutionInstruction.SET_ALL_JOB_TRIGGERS_ERROR);
continue;
}
// 在ThreadPool中分配一个线程来执行JobRunShell
// 随后就会在JobRunShell的run()方法中执行JobDetail
// 执行完毕后会再执行Trigger的完成逻辑
// 对应的步骤可以拆分如下
// 1. 从qrtz_locks表获取TRIGGER_ACCESS锁
// 2. 如果Trigger后续不再执行则在qrtz_triggers表里删除这个Trigger
// 3. 如果Trigger执行的任务是不允许并发执行则将所有关联的Trigger状态做如下更新
// 将Trigger状态由BLOCKED恢复成WAITING
// 4. 如果任务类由@PersistJobDataAfterExecution注解修饰则
// 将qrtz_job_details表里的JobDetail的JOB_DATA字段更新
// 5. 删除Trigger在qrtz_fired_triggers表中对应的记录
if (qsRsrcs.getThreadPool().runInThread(shell) == false) {
getLog().error("ThreadPool.runInThread() return false!");
qsRsrcs.getJobStore().triggeredJobComplete(triggers.get(i), bndle.getJobDetail(), CompletedExecutionInstruction.SET_ALL_JOB_TRIGGERS_ERROR);
}
}
continue;
}
} else {
continue;
}
long now = System.currentTimeMillis();
long waitTime = now + getRandomizedIdleWaitTime();
long timeUntilContinue = waitTime - now;
synchronized(sigLock) {
try {
if(!halted.get()) {
if (!isScheduleChanged()) {
sigLock.wait(timeUntilContinue);
}
}
} catch (InterruptedException ignore) {
}
}
} catch(RuntimeException re) {
getLog().error("Runtime error occurred in main trigger firing loop.", re);
}
}
qs = null;
qsRsrcs = null;
}
(下面分小节进行讲解)
1.拿到即将触发的所有Trigger
这里的即将触发,就是触发时间在30分钟内且状态是WAITING的Trigger。
针对每一个即将触发的Trigger,其在qrtz_triggers表里的状态此时会被置为ACQUIRED,针对这个Trigger同时也会插入一条记录到qrtz_fired_triggers表中,状态也是ACQUIRED,表示这个Trigger已经在fire处理了。
假如我们有一个trigger-1,对应任务允许并发执行,还有一个trigger-2,对应任务不允许并发执行(由@DisallowConcurrentExecution注解修饰),并且这两个Trigger的触发时间均在30分钟内。
那么此时在qrtz_triggers表中,它们的状态是这样的。
TRIGGER_NAME | ... | TRIGGER_STATE |
trigger-1 | ... | ACQUIRED |
trigger-2 | ... | ACQUIRED |
在qrtz_fired_triggers表中,它们的状态是这样的。
TRIGGER_NAME | ... | STATE |
trigger-1 | ... | ACQUIRED |
trigger-2 | ... | ACQUIRED |
2.等待最先触发的Trigger的触发时间在2ms内
如果最先触发的Trigger的触发时间距离当前大于2ms,则进行等待,直到小于等于2ms。
3.将Trigger进行fire
fire一个Trigger其实就是将这个Trigger在qrtz_fired_triggers表中记录的状态设置为EXECUTING,后面会为这个Trigger分配线程来执行任务,注意此时Trigger对应的任务实际上是还没有执行的。
Trigger被fire之后,这个Trigger在qrtz_triggers里面的状态及下一次fire的时间会被更新,这里需要关注一下 状态 的更新。
如果Trigger对应的任务没有被@DisallowConcurrentExecution注解修饰,那么这个Trigger的状态更新为WAITING;如果Trigger对应的任务被@DisallowConcurrentExecution注解修饰,那么这个Trigger的状态会更新为BLOCKED,并且还会将这个被@DisallowConcurrentExecution注解修饰的任务所有关联的Trigger的状态更新为BLOCKED。
注意到一个Trigger会被fire,首先就是需要满足触发时间在30分钟内且状态是WAITING,所以如果一个被@DisallowConcurrentExecution注解修饰的任务正在被执行,那么这个任务关联的所有Trigger的状态都应该被置为BLOCKED,以防止这些Trigger再次被fire。
回到第1小节中的例子,此时在qrtz_triggers表中,trigger-1和trigger-2它们的状态是这样的。
TRIGGER_NAME | ... | TRIGGER_STATE |
trigger-1 | ... | WAITING |
trigger-2 | ... | BLOCKED |
在qrtz_fired_triggers表中,它们的状态是这样的。
TRIGGER_NAME | ... | STATE |
trigger-1 | ... | EXECUTING |
trigger-2 | ... | EXECUTING |
4.为fire的Trigger分配线程并执行任务
被fire的Trigger会在qrtz_fired_triggers表中插入一条记录,随后就会被分配一个线程来执行这个Trigger关联的JobDetail。
执行JobDetail没什么好说的,就是调用到这个任务的execute() 方法,我们这里需要关注的是任务执行完毕后的对于Trigger的complete逻辑。
首先会判断当前这个Trigger是不是不会再执行了,如果不会再执行了,那么就会在qrtz_triggers表里删除这个Trigger。
然后就是如果这个Trigger执行的任务是不允许并发执行的,那么此时这个任务关联的所有Trigger的状态肯定都是BLOCKED,所以还需要将这些Trigger的状态由BLOCKED还原为WAITING。
最后就是删除fire的Trigger在qrtz_fired_triggers表中的记录。
回到第1小节中的例子,此时在qrtz_triggers表中,trigger-1和trigger-2它们的状态是这样的。
TRIGGER_NAME | ... | TRIGGER_STATE |
trigger-1 | ... | WAITING |
trigger-2 | ... | WAITING |
在qrtz_fired_triggers表中,它们都没有记录了。
5.暂停一个Trigger
在上面的所有讨论中,都没有提及Trigger的暂停状态,也就是PAUSED状态,因为这个状态相对独立,没必要和上面的其余状态转换混在一起讨论。
我们可以通过如下手段将Trigger的状态置为PAUSED。
- 通过Trigger的group和name找到Trigger,然后将其状态置为PAUSED。这种可以理解为暂停一个Trigger;
- 通过JobDetail找到所有关联的Trigger,然后将这些Trigger的状态置为PAUSED。这种可以理解为暂停一个JobDetail。
当Trigger在qrtz_triggers表中的状态是PAUSED之后,就不再满足触发时间在30分钟内且状态是WAITING,从而Trigger就不会被fire,对应的任务也不会被执行。
总结
阅读完本文后,应该能够回答下面的问题。
1. Trigger的触发流程是怎么样的
首先触发时间在30分钟内且状态是WAITING的Trigger会被获取出来;
其次最先触发的Trigger的触发时间在2s内时就会开始fire这些Trigger;
fire一个Trigger就是将这个Trigger插入一条数据到qrtz_fired_triggers表,然后会为这个Trigger对应的任务分配一个线程来执行,执行完毕后删除Trigger在qrtz_fired_triggers表里的记录。
2. Trigger的状态是怎么变化的
Trigger不触发时状态是WAITING,表示等待着被触发并且允许被触发;
当Trigger触发时间在30分钟内时会被获取出来等待被fire,此时Trigger状态是ACQUIRED,表示已经被获取;
Trigger被fire后,如果Trigger关联的任务允许并发执行,此时Trigger状态还原为WAITING,表示等待着下一次触发,如果Trigger关联的任务不允许并发执行,此时这个任务关联的所有Trigger的状态会被设置为BLOCKED,表示这些Trigger都阻塞住了;
当Trigger对应的任务被执行完毕后,如果Trigger后续不会再触发了,则删除Trigger,如果执行的任务是不允许并发执行的,则需要将这个任务关联的所有Trigger的状态从BLOCKED还原为WAITING。
3. Trigger如何暂停
我们可以通过暂停JobDetail来暂停其关联的所有Trigger,也可以单独暂停某一个Trigger。
所谓暂停Trigger,其实就是将这个Trigger的状态设置为PAUSED,一旦设置为PAUSED,这些Trigger就不满足触发时间在30分钟内且状态是WAITING,从而就不会被触发了。
4. Quartz如何保证同时只有一个实例执行定时任务
Quartz基于数据库实现了一套分布式锁,可以理解为抢占到锁的实例才有资格来触发Trigger从而执行定时任务。
相关推荐
- 定时任务工具,《此刻我要...》软件体验
-
之前果核给大家介绍过一款小众但实用的软件——小说规则下载器,可以把网页里的小说章节按照规则下载到本地,非常适合喜欢阅读小说的朋友。有意思的是,软件作者当时看到果核写的体验内容后,给反推荐到他的帖子里去...
- 前端定时任务的神库:Node-cron,让你的项目更高效!
-
在前端开发中,定时任务是一个常见的需求。无论是定时刷新数据、轮询接口,还是发送提醒,都需要一个可靠且灵活的定时任务解决方案。今天,我要向大家介绍一个强大的工具——Node-cron,它不仅能解决定时任...
- Shutter Pro!一款多功能定时执行任务工具
-
这是一款可以在电脑上定时执行多种任务的小工具,使用它可以根据时间,电量等来设定一些定时任务,像定时打开程序、打开文件,定时关机重启,以及定时弹窗提醒等都可以轻松做到。这是个即开即用的小工具,无需安装,...
- 深度解析 Redis 缓存击穿及解决方案
-
在当今互联网大厂的后端开发体系中,Redis缓存占据着极为关键的地位。其凭借高性能、丰富的数据类型以及原子性操作等显著优势,助力众多高并发系统从容应对海量用户的访问冲击,已然成为后端开发从业者不可或...
- 从零搭建体育比分网站完整步骤(比较好的体育比分软件)
-
搭建一个体育比分网站是一个涉及前端、后端、数据源、部署和维护的完整项目。以下是从零开始搭建的详细流程:一、明确项目需求1.功能需求:实时比分展示(如足球、篮球、网球等)支持多个联赛和赛事历史数据查询比...
- 告别复杂命令行:GoCron 图形界面让定时任务触手可及
-
如果你是运维人员或者经常接触一些定时任务的配置,那么你一定希望有一款图形界面来帮助你方便的轻松配置定时任务,而GoCron就是这样一款软件,让你的配置可视化。什么是GoCron从名字你就可以大概猜到,...
- Java任务管理框架核心技术解析与分布式高并发实战指南
-
在当今数字化时代,Java任务管理框架在众多应用场景中发挥着关键作用。随着业务规模的不断扩大,面对分布式高并发的复杂环境,掌握其核心技术并进行实战显得尤为重要。Java任务管理框架的核心技术涵盖多个方...
- 链表和结构体实现:MCU软件定时器(链表在单片机中的应用)
-
在一般的嵌入式产品设计中,介于成本、功耗等,所选型的MCU基本都是资源受限的,而里面的定时器的数量更是有限。在我们软件设计中往往有多种定时需求,例如脉冲输出、按键检测、LCD切屏延时等等,我们不可能...
- SpringBoot定时任务(springboot定时任务每小时执行一次)
-
前言在我们开发中,经常碰到在某个时间点去执行某些操作,而我们不能人为的干预执行,这个时候就需要我们使用定时任务去完成该任务,下面我们来介绍下载springBoot中定时任务实现的方式。定时任务实现方式...
- 定时任务新玩法!systemd timer 完整实战详解
-
原文链接:「链接」Hello,大家好啊!今天给大家带来一篇使用systemdtimer实现定时任务调度的详细实战文章。相比传统的crontab,systemdtimer更加现代化、结构清晰...
- Celery与Django:打造高效DevOps的定时任务与异步处理神器
-
本文详细介绍了Celery这一强大的异步任务队列系统,以及如何在Django框架中应用它来实现定时任务和异步处理,从而提高运维开发(DevOps)的效率和应用性能。下面我们先认识一下Cele...
- 订单超时自动取消的7种方案,我用这种!
-
前言在电商、外卖、票务等系统中,订单超时未支付自动取消是一个常见的需求。这个功能乍一看很简单,甚至很多初学者会觉得:"不就是加个定时器么?"但真到了实际工作中,细节的复杂程度往往会超...
- 裸机下多任务框架设计与实现(gd32裸机配置lwip 网络ping不通)
-
在嵌入式系统中,特别是在没有操作系统支持的裸机环境下,实现多任务执行是一个常见的挑战。本文将详细介绍一种基于定时器的多任务框架设计,通过全局时钟和状态机机制,实现任务的非阻塞调度,确保任务执行中不会出...
- 亿级高性能通知系统构建,小白也能拿来即用
-
作者介绍赵培龙,采货侠JAVA开发工程师分享概要一、服务划分二、系统设计1、首次消息发送2、重试消息发送三、稳定性的保障1、流量突增2、问题服务的资源隔离3、第三方服务的保护4、中间件的容错5、完善...
- 运维实战:深度拆解Systemd定时任务原理,90%的人不知道的玩法
-
运维实战:深度拆解Systemd定时任务原理,90%的人不知道的高效玩法一、Systemd定时任务的核心原理Systemd定时任务是Linux系统中替代传统cron的现代化解决方案,通过...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- springmvc框架 (49)
- 分布式事务框架 (65)
- scrapy框架 (56)
- shiro框架 (61)
- 定时任务框架 (56)
- grpc框架 (55)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)