百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

Apple团队:轻量级、通用且移动友好的网络框架(附论文下载)

ccwgpt 2024-11-19 02:21 15 浏览 0 评论

关注并星标

从此不迷路

计算机视觉研究院


公众号ID|ComputerVisionGzq

论文地址:https://arxiv.org/pdf/2110.02178.pdf

计算机视觉研究院专栏

作者:Edison_G

轻量级卷积神经网络 (CNN) 是移动视觉任务的事实。他们的空间归纳偏差使他们能够在不同的视觉任务中以较少的参数学习表示。


一、前言


轻量级卷积神经网络 (CNN) 是移动视觉任务的事实。他们的空间归纳偏差使他们能够在不同的视觉任务中以较少的参数学习表示。然而,这些网络在空间上是局部的。为了学习全局表示,已经采用了基于自我注意的视觉变换器 (ViTs)。与CNN不同,ViTs是重量级的。


二、背景


基于self-attention的模型,尤其是视觉变换器(ViTs;下图a),是卷积神经网络的替代方法,可用于学习视觉表示。简而言之,ViTs将图像划分为一系列不重叠的补丁,然后使用Transformer中的multi-headed自注意力学习interpatch表示。总体趋势是增加ViTs网络中的参数数量以提高性能。然而,这些性能改进是以模型大小(网络参数)和延迟为代价的。许多现实世界的应用程序(例如,增强现实和自动轮椅)需要视觉识别任务(例如,目标检测和语义分割)才能及时在资源受限的移动设备上运行。为了有效,此类任务的ViT模型应该是轻量级和快速的。即使缩小ViT模型的模型大小以匹配移动设备的资源限制,其性能也明显比轻量级CNN差。例如,对于大约5-6百万的参数预算,DeIT的准确度比MobileNetv3低3%。因此,设计轻量级的ViTs模型势在必行。

轻量级CNN为许多移动视觉任务提供了动力。然而,基于ViT的网络还远未在此类设备上使用。与易于优化和与特定任务网络集成的轻量级CNN不同,ViT是重量级的(例如,ViT-B/16 vs. MobileNetv3:86 vs. 750 万个参数),更难优化,需要大量的数据增强和L2正则化以防止过拟合,并且需要昂贵的解码器来执行下游任务,尤其是密集预测任务。例如,基于ViT的分割网络学习了大约3.45亿个参数,并获得了与基于CNN的网络DeepLabv3相似的性能,有5900万个参数。在基于ViT的模型中需要更多参数可能是因为它们缺乏特定于图像的归纳偏差,这是CNN固有的 。为了构建稳健且高性能的ViT模型,结合卷积和变换器的混合方法引起了人们的兴趣。然而,这些混合模型仍然是重量级的,并且对数据增强很敏感。例如,去除CutMix和DeIT-style数据增强会导致ImageNet准确率显着下降(78.1% 到 72.4%)(2021)。


三、概要


在今天分享中,研究者提出以下问题:是否可以结合两者的优势?CNN和ViT为移动视觉任务构建轻量级低延迟网络?

为此,研究者推出了MobileViT,这是一种用于移动设备的轻量级通用视觉转换器。MobileViT为使用转换器(即,转换器作为卷积)对信息的全局处理提出了不同的观点。新框架的结果表明,MobileViT在不同的任务和数据集上明显优于基于CNN和ViT的网络。在ImageNet-1k数据集上,MobileViT在大约600万个参数下达到了78.4%的top-1准确率,比MobileNetv3(基于CNN)和DeIT(基于ViT)准确率高3.2%和6.2%。在MS-COCO目标检测任务上,对于相似数量的参数,MobileViT的准确度比MobileNetv3高5.7%


四、新框架


MobileViT

与ViT及其变体(有和没有卷积)不同,MobileViT提供了一个不同的视角来学习全局表示。标准卷积涉及三个操作:展开、局部处理和折叠。MobileViT块使用转换器将卷积中的局部处理替换为全局处理。这允许MobileViT块具有类似CNN和ViT的属性,这有助于它以更少的参数和简单的训练配方(例如,基本增强)学习更好的表示

据我们所知,这是第一项表明轻量级ViT可以通过跨不同移动视觉任务的简单训练配方实现轻量级CNN级性能的工作。对于大约5-600万的参数预算,MobileViT在 ImageNet-1k数据集上实现了78.4%的 top-1 准确率,比MobileNetv3准确率高3.2%。当MobileViT用作高度优化的移动视觉任务特定架构中的功能主干时,我们还观察到性能的显着提升。将MNASNet替换为MobileViT作为SSDLite中的特征主干,产生了更好(+1.8% mAP)和更小(1.8×)的检测网络。具体如下图:

MobileViT显示出与CNN类似的泛化能力。MobileNetv2和ResNet-50的最终训练和验证错误分别用☆和O标记。

每个像素都能看到MobileViT块中的每个其他像素。在这个例子中,红色像素使用 transformers处理蓝色像素(其他补丁中相应位置的像素)。因为蓝色像素已经使用卷积对相邻像素的信息进行了编码,所以这允许红色像素对来自图像中所有像素的信息进行编码。这里,黑色和灰色网格中的每个单元格分别代表一个补丁和一个像素。

Multi-scale vs. standard sampler.


五、实验


ImageNet-1k验证集上MobileViT和CNN的比较。所有模型都使用基本增强。

在这里,Basic意味着ResNet风格的增强,而Advanced意味着是增强方法的组合,如MixUp、RandAugmentation和CutMix。


Inference time of MobileViT models on different tasks.


? THE END

转载请联系本公众号获得授权


计算机视觉研究院学习群等你加入!


计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

计算机视觉研究院

公众号IDComputerVisionGzq


??

相关推荐

盲盒小程序背后的技术揭秘:如何打造个性化购物体验

在2025年的今天,盲盒小程序作为一种新兴的购物方式,正以其独特的魅力和个性化体验吸引着越来越多的消费者。这种将线上购物与盲盒概念相结合的应用,不仅为消费者带来了未知的惊喜,还通过一系列技术手段实现了...

小程序·云开发已支持单日亿级调用量,接口可用率高达99.99%

2019-10-1914:1210月19日,由腾讯云与微信小程序团队联合举办的“小程序·云开发”技术峰会在北京召开。会上,微信小程序团队相关负责人表示“小程序·云开发”系统架构已经支持每天亿级别的...

程序员副业开启模式:8个GitHub上可以赚钱的小程序

前言开源项目作者:JackonYang今天推荐的这个项目是「list-of-wechat-mini-program-list」,开源微信小程序列表的列表、有赚钱能力的小程序开源代码。这个项目分为两部分...

深度科普:盲盒小程序开发的底层逻辑

在当下的数字化浪潮中,盲盒小程序以其独特的趣味性和互动性,吸引着众多消费者的目光。无论是热衷于收集玩偶的年轻人,还是享受拆盒惊喜的上班族,都对盲盒小程序情有独钟。那么,这种备受欢迎的盲盒小程序,其开发...

微信小程序的制作步骤

SaaS小程序制作平台,作为数字化转型时代下的创新产物,不仅将易用性置于设计的核心位置,让非技术背景的用户也能轻松上手,快速制作出功能丰富、界面精美的小程序,更在性能和稳定性方面投入了大量精力,以确保...

携程开源--小程序构建工具,三分钟搞定

前言今天推荐的这个项目是「wean」,一个小程序构建打包工具。在wean之前,大量小程序工具使用webpack进行打包,各种loader、plugin导致整个开发链路变长。wean旨在解...

校园小程序的搭建以及营收模式校园外卖程序校园跑腿校园圈子系统

校园小程序的架构设计主要包括云端架构和本地架构两部分。云端架构方面,采用Serverless架构可以降低技术门槛,通过阿里云、腾讯云等平台提供的云服务,可以实现弹性扩容和快速部署。例如,使用云数据库、...

盲盒小程序开发揭秘:技术架构与实现原理全解析

在2025年的今天,盲盒小程序作为一种结合了线上购物与趣味性的创新应用,正受到越来越多用户的喜爱。其背后的技术架构与实现原理,对于想要了解或涉足这一领域的人来说,无疑充满了神秘与吸引力。本文将为大家科...

月活百万的小程序架构设计:流量暴增秘籍

从小程序到"大"程序的蜕变之路当你的小程序用户量从几千跃升至百万级别时,原有的架构就像一件不合身的衣服,处处紧绷。这个阶段最常遇到的噩梦就是服务器崩溃、接口超时、数据丢失。想象一下,在...

认知智能如何与产业结合?专家学者共探理论框架与落地实践

当前,以大模型为代表的生成式人工智能等前沿技术加速迭代,如何将认知智能与产业结合,成为摆在各行各业面前的一个问题。论坛现场。主办方供图7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议在...

现代中医理论框架

...

认知行为(CBT)中的ABC情绪理论

情绪ABC理论是由美国心理学家阿尔伯特·艾利斯(AlbertEllis1913-2007)创建的理论,A表示诱发性事件(Activatingevent),B表示个体针对此诱发性事件产生的一些信...

说说卡伦霍妮的理论框架,对你调整性格和人际关系,价值很大

01自在今天我主要想说下霍妮的理论框架。主要说三本书,第一本是《我们时代的神经症人格》,第二本是《我们内心的冲突》,第三本是《神经症与人的成长》。根据我的经验,三本书价值巨大,但并不是每个人都能读进去...

供应链管理-理论框架

一个最佳价值的供应链,应该是一个具有敏捷性、适应性和联盟功能(3A)的供应链,其基本要素包括战略资源、物流管理、关系管理以及信息系统,目标是实现速度、质量、成本、柔性的竞争优势。篇幅有...

微信WeUI设计规范文件下载及使用方法

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。WeUI是一套同微信原生视觉体验一致的基础样式库,由微信官方设计团队为微信Web开发量身设计,可以令用户的使用感知...

取消回复欢迎 发表评论: