百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术文章 > 正文

EdgeYOLO:边缘设备上实时运行的目标检测器及Pytorch实现

ccwgpt 2024-10-26 08:44 30 浏览 0 评论

关注并星标

从此不迷路

计算机视觉研究院


公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

代码地址:https://github.com/LSH9832/edgeyolo

计算机视觉研究院专栏

作者:Edison_G

今天分享的研究者提出了一种基于最先进的YOLO框架的高效、低复杂度和无锚的目标检测器,该检测器可以在边缘计算平台上实时实现


01

概述

研究者开发了一种增强的数据增强方法来有效抑制训练过程中的过拟合,并设计了一种混合随机损失函数来提高小目标的检测精度。受FCOS的启发,提出了一种更轻、更高效的解耦头,可以在不损失精度的情况下提高推理速度。提出的基线模型在MS COCO2017数据集中可以达到50.6%的AP50:95和69.8%的AP50准确度,在VisDrone2019 DET数据集可以达到26.4%的AP50:95和44.8%的AP50准确度,并且它满足边缘计算设备Nvidia Jetson AGX Xavier的实时性要求(FPS≥30)。

02

介绍

在常见的目标检测数据集(如MS COCO2017)上,使用两阶段策略的模型比使用一阶段策略的要好一点。尽管如此,由于两阶段框架的内部限制,它远远不能满足传统计算设备的实时性要求,并且在大多数高性能计算平台上可能面临同样的情况。相比之下,单级目标检测器可以在实时指标和性能之间保持平衡。因此,他们更受研究人员的关注,YOLO系列算法以高速迭代更新。从YOLOv1到YOLOv3的更新主要是对底层框架结构的改进,YOLO的大多数后期主流版本都专注于提高精度和推理速度。

此外,他们的优化测试平台主要是具有高性能GPU的大型工作站。然而,他们最先进的模型在这些边缘计算设备上通常以令人不满意的低FPS运行。为此,一些研究人员提出了参数较少、结构较轻的网络结构,如MobileNet和ShuffleNet,以取代原有的骨干网络,从而在移动设备和边缘设备上实现更好的实时性能,但要牺牲一定的精度。在今天分享中,研究者的目标是设计一种具有良好精度并可以在边缘设备上实时运行的物体检测器。

如下图所示,研究者还为计算能力较低的边缘计算设备设计了更轻、参数更少的模型,这些设备也显示出更好的性能。

03

新框架

随机数据扩充不可避免地会导致一些标签无效,例如(a)中第二张图的右下角和第三张图的左下角。虽然有方框,但它们不能提供有效的目标信息。标签数量过少会对训练产生明显的负面影响,可以通过增加(b)中的有效方框数量来避免这种影响。

Enhanced-Mosaic & Mixup

常用的数据增强策略如下(a)和(b)所示,但是(a)(b)由于数据变换,容易包含不含有效目标的图像,此外这种情况的概率随着每个原始图像中标签数量的减少而逐渐增加。

作者因此提出的方法(c):

  • 首先,对多组图像使用Mosaic方法(可以根据数据集中单个图片中标签的平均数量的丰富程度来设置组数)

  • 然后,通过Mixup方法将最后一个简单处理的图像与Mosaic处理的图像混合(最后一幅图像的原始图像边界在变换后的最终输出图像的边界内)

Lite-Decoupled Head

解耦头首先在FCOS中提出,然后用于其他Anchor-Free目标检测器,如YOLOX。在最后几个网络层使用解耦结构可以加速网络收敛并提高回归性能。但是由于解耦头采用了导致额外推理成本的分支结构,因此YOLOv6提出了具有更快推理速度的高效解耦头,这将中间3×3卷积层的数量减少到仅一层,同时保持与输入特征图相同的更大数量的通道。

但是这种额外的推理成本随着通道和输入大小的增加也变得更加明显。因此引入重参化的技术增强学习能力的同时加快推理。

04

实验

representative results in VisDrone2019-DET-val

representative results on MS COCO2017-val

? THE END

转载请联系本公众号获得授权


计算机视觉研究院学习群等你加入!


ABOUT

计算机视觉研究院


计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!


VX:2311123606



??






相关推荐

盲盒小程序背后的技术揭秘:如何打造个性化购物体验

在2025年的今天,盲盒小程序作为一种新兴的购物方式,正以其独特的魅力和个性化体验吸引着越来越多的消费者。这种将线上购物与盲盒概念相结合的应用,不仅为消费者带来了未知的惊喜,还通过一系列技术手段实现了...

小程序·云开发已支持单日亿级调用量,接口可用率高达99.99%

2019-10-1914:1210月19日,由腾讯云与微信小程序团队联合举办的“小程序·云开发”技术峰会在北京召开。会上,微信小程序团队相关负责人表示“小程序·云开发”系统架构已经支持每天亿级别的...

程序员副业开启模式:8个GitHub上可以赚钱的小程序

前言开源项目作者:JackonYang今天推荐的这个项目是「list-of-wechat-mini-program-list」,开源微信小程序列表的列表、有赚钱能力的小程序开源代码。这个项目分为两部分...

深度科普:盲盒小程序开发的底层逻辑

在当下的数字化浪潮中,盲盒小程序以其独特的趣味性和互动性,吸引着众多消费者的目光。无论是热衷于收集玩偶的年轻人,还是享受拆盒惊喜的上班族,都对盲盒小程序情有独钟。那么,这种备受欢迎的盲盒小程序,其开发...

微信小程序的制作步骤

SaaS小程序制作平台,作为数字化转型时代下的创新产物,不仅将易用性置于设计的核心位置,让非技术背景的用户也能轻松上手,快速制作出功能丰富、界面精美的小程序,更在性能和稳定性方面投入了大量精力,以确保...

携程开源--小程序构建工具,三分钟搞定

前言今天推荐的这个项目是「wean」,一个小程序构建打包工具。在wean之前,大量小程序工具使用webpack进行打包,各种loader、plugin导致整个开发链路变长。wean旨在解...

校园小程序的搭建以及营收模式校园外卖程序校园跑腿校园圈子系统

校园小程序的架构设计主要包括云端架构和本地架构两部分。云端架构方面,采用Serverless架构可以降低技术门槛,通过阿里云、腾讯云等平台提供的云服务,可以实现弹性扩容和快速部署。例如,使用云数据库、...

盲盒小程序开发揭秘:技术架构与实现原理全解析

在2025年的今天,盲盒小程序作为一种结合了线上购物与趣味性的创新应用,正受到越来越多用户的喜爱。其背后的技术架构与实现原理,对于想要了解或涉足这一领域的人来说,无疑充满了神秘与吸引力。本文将为大家科...

月活百万的小程序架构设计:流量暴增秘籍

从小程序到"大"程序的蜕变之路当你的小程序用户量从几千跃升至百万级别时,原有的架构就像一件不合身的衣服,处处紧绷。这个阶段最常遇到的噩梦就是服务器崩溃、接口超时、数据丢失。想象一下,在...

认知智能如何与产业结合?专家学者共探理论框架与落地实践

当前,以大模型为代表的生成式人工智能等前沿技术加速迭代,如何将认知智能与产业结合,成为摆在各行各业面前的一个问题。论坛现场。主办方供图7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议在...

现代中医理论框架

...

认知行为(CBT)中的ABC情绪理论

情绪ABC理论是由美国心理学家阿尔伯特·艾利斯(AlbertEllis1913-2007)创建的理论,A表示诱发性事件(Activatingevent),B表示个体针对此诱发性事件产生的一些信...

说说卡伦霍妮的理论框架,对你调整性格和人际关系,价值很大

01自在今天我主要想说下霍妮的理论框架。主要说三本书,第一本是《我们时代的神经症人格》,第二本是《我们内心的冲突》,第三本是《神经症与人的成长》。根据我的经验,三本书价值巨大,但并不是每个人都能读进去...

供应链管理-理论框架

一个最佳价值的供应链,应该是一个具有敏捷性、适应性和联盟功能(3A)的供应链,其基本要素包括战略资源、物流管理、关系管理以及信息系统,目标是实现速度、质量、成本、柔性的竞争优势。篇幅有...

微信WeUI设计规范文件下载及使用方法

来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。WeUI是一套同微信原生视觉体验一致的基础样式库,由微信官方设计团队为微信Web开发量身设计,可以令用户的使用感知...

取消回复欢迎 发表评论: