mmTrix大数据分析平台构建实录(大数据分析平台介绍)
ccwgpt 2024-10-26 08:44 21 浏览 0 评论
在数据分析中,有超过90%数据都是来自于非结构化数据,其中大部分的是日志,如运维、安全审计、用户访问数据以及业务数据等,但随着互联网快速的发展,数据规模也是水涨船高,从早前的GB级到现在的TB级,甚至PB级也只是短短几年光景。而移动互联网的时代到来,可以说每个人无时无刻不在产生数据,几乎成爆发式的增长。
如此多的数据早已压榨完单机的性能,在性价比的驱使下,转向分布式也是多数互联网企业早就未雨绸缪的事。2016年恰逢Hadoop十周年,可以说Hadoop改变了企业对数据的存储、处理和分析的过程,并引燃了整个大数据生态圈,而构建企业级大数据分析平台也必不可少从它开始。
一、基石-Hadoop
Hadoop2.0之后,资源管理被剥离了出来,变成了YARN。虽然在集群规模小于200台的企业里,可能不能感受到YARN带来的过多优势,但是与MRv1相比,其已不再是单纯的计算框架(Mapreduce),而是一个框架管理器,可以部署多个计算框架(如Spark,Storm,Impala等),NoSQL存储(如HBase等)。
HDFS是Hadoop的分布式文件系统,多数的计算框架都支持直接从HDFS上读取数据,且可以无障碍的部署在低廉的服务器上,Replication机制也保证了数据容灾性。但有些场景也不适合使用,如低延迟数据访问、大量小文件存储等,但可以依赖其他框架解决,如HBase、Alluxio解决低延迟访问、FastDFS解决大量小文件存储的问题,mmTrix的真机监测就是通过FastDFS来解决存储真机客户端大量回传的几KB小文件。
二、快刀-Spark、Mapreduce、Storm、Spark Streaming
很多人觉得Spark的出现,可以完全替代Mapreduce,尽管Mapreduce很优秀,编程模型简单,但是真的太慢了(前公司的BI人员多次吐槽,敲完一条连表HiveSQL,他可以看一集火影)。Spark目前正朝着2.0大步迈进,从目前最新的1.6版本来看,上千个补丁完全可以看出Spark正如其名一般的火爆。Spark 1.6引入新的内存管理器,自动调整不同内存区域大小,根据程序运行时自动地增加或缩小相应内存区域大小,这意味着对许多应用程序来说,在无需手动调整的情况下,在进行join和aggregation等操作时,其可用的内存将大大增加。
尽管Spark如此优秀,但是在日级别、部分业务小时级的数据计算时,我们依旧选择Mapreduce,但对于分钟级的计算已经将这光荣的任务移交给Spark。
Storm作为开源实时框架的先驱,在提到实时计算的时候,会第一反应想到它,尽管twitter公司已经宣布弃用,改用Heron。从Twitter在SIGMOD 2015上发布的论文来看,Heron可以说有非常不错的提升,Twitter也表示在将来会开源。而阿里的JStorm在2015年10月份也加入了Storm的豪华午餐,应该会出现在下个大版本里。我们部署了JStorm2.1.0进行了测试,发现JStorm表现出非常不错的性能,仅从监控UI就能看出阿里对于JStorm的诚意,但最重要的是JStorm解决了Storm的几个问题,如过度依赖Zookeeper(频繁交互Zookeeper)、HA、多集群监控、资源硬隔离等。
而Spark Streaming则是目前我们正在过渡到的一个实时计算框架,Spark Streaming与Storm在处理数据的本质上有着很大的不同,Storm是逐个处理tuple,而Spark Streaming则可看成细粒度批处理(micro batch)的spark任务,但这也决定了其高吞吐量和较高的延迟。一般认为Storm的处理瓶颈是单条流水线20000Tuple/s(每个tuple大小为1KB),但在一些大数据量且延迟要求不高的场景下,其实Spark Streaming可能更适合,目前mmTrix也准备将静态CDN访问日志相关的秒级监控迁到Spark Streaming。
三、辅助-Kafka、OpenTSDB、Kylin
Kafka为LinkedIn开源的优秀分布式发布订阅消息系统,即便是廉价的服务器也能跑出单机10W/s的效率。Kafka解藕了服务的同时,对消费端消费能力不足的情况下,实现了数据缓冲,并且消费不删除和Retention机制也提高了其在实践中的高可用。即便在后端消费服务全部宕机的情况下,Kafka也能默默承载全部数据压力,并给予运维、开发人员修复的时间(取决于配置项log.retention.hours)。
由于mmTrix是主要做APM业务的,不可避免地会遇到时间序列的监控数据,如OS监控、Plugin监控、Server监控等业务。早期的做法,选择了Mongo作为存储工具,但最终我们还是选择了HBase,并配合OpenTSDB使用。OpenTSDB主要由Time Series Daemon (TSD)以及一系列的命令工具组成。每个TSD都是独立的,它们之间没有Master,没有共享状态,从而在使用的时候可以部署任意多个,且相互之间不影响。数据的存储主要依托开源的列存储数据HBase,按时间序列存储。与TSD之间的数据交互,可以通过简单的telnet-style协议,比如HTTP API或者内建的GUI。时间序列的数据是高密集的,如果设计HBase Rowkey时,只注重在时间尺度上的Scan且把全时间带入到Rowkey中,当大规模灌入数据的时候是极易引起Region热点问题的。
而OpenTSDB的Rowkey设计巧妙的规避了这个问题,采用固定长度的Rowkey,让Rowkey包含尽可能多的检索信息。同时,其使用AsyncHbase而非HBase自带的HTable,且线程安全、非阻塞、异步、多线程并发的HBase API,在高并发和高吞吐时,可以获得更好的效果。
Kylin是eBay开源给Apache的OLAP平台,并于2015年12月8日成为Apache顶级项目。对于需要长期建立的数据分析仓库,在不同的时间弹性尺度上聚合结果是比较耗时的,而用户经常要求在秒级返回结果,OLAP平台正好解决这个问题。同时,mmTrix的技术支持和OP人员也需要快速的帮助客户排查一些问题或者快速制作分析报表。Kylin目前来看使用的限制较多,对于其依赖的组件Hive、HBase、Hadoop有一定限制,而且目前使用的公司还较少(京东云海分享过使用经验),mmTrix目前也在试水。
四、大数据分析平台实践
目前mmTrix整个大数据分析平台主要抽象成5层,包括数据源层、数据集成层、数据分析层、数据分析存储层、数据服务层,组件的监控则贯穿整个平台。
数据源层
数据源目前主要分3类,新增的外部数据、已保存的外部数据、已保存的内部数据。新增的外部数据,主要是非结构化的数据,由log agent,plugin agent(Redis、MySQL、Mongo等)、OS agent等上传的数据。已保存的外部数据,主要是由其他服务、采集整合的结构化数据,辅助构建数据仓库,同时存储部分元数据。已保存的内部数据 ,主要是数据落地备份和长期增量建立的数据仓库,业务主要涵盖全站加速、图片加速、网络加速、OS监控、Plugin监控等。
数据的规模,日新增数据量约1.5TB,其中网络加速日新增约20亿条,全站加速约1200万条,OS监控日新增约110GB。
数据集成层
数据集成层则是汇聚集成数据源,供各种组件使用(例如数据获取、数据清洗入库等)。目前,有kafka2hdfs、kafka2opentsdb服务分别落地新增的数据到HDFS、OpenTSDB,以多线程模式并行处理。Collector主要设计为数据收集、数据适配、数据分发,将上传的plugin数据收集后适配成OpenTSDB所需的数据格式,然后数据分发到TSD进行数据落地。
数据分析层
数据分析层则分为实时计算、离线计算、OLAP分析三块。
实时计算目前由Storm搭建,已运行的topology主要负责全站加速、网络加速的各项统计,计算结果在开启pipeline的情况下通过Codis写入(测试对比写入单机Redis,性能损耗约10%-15%),过期时效为6分钟。一些需要原语特性的实时计算,则使用Trident API,如实时监控报警(防止失败处理导致重复发送,继而引起误报,其实有时候误报比一两次的漏报更可怕)。
离线计算目前由MapReduce和Spark计算框架负责,Job调度由基于Quartz自研的JobScheduler定时调度,主要负责全站加速、网络加速、图片加速等各项业务的统计调度。JobScheduler是一个轻量级的调度系统,对任务依赖、补跑、失败重试等都进行了较好的实现,但也存在一些问题,目前也在借鉴阿里的Zeus系统进行完善,如分布式等特性。目前离线计算任务,仅定时任务月均13W左右。
OLAP分析是基于长期建立的数据分析仓库,对每日新增数据进行预计算,更新维度索引,提供弹性的数据分析,目前只是处于试水阶段。
数据分析存储层
数据分析存储层存储数据分析结果或者中间结果,由后续数据服务提供简单聚合等计算。目前,Redis负责实时数据的结果存储(过期失效),以及调度状态、任务成功失败标记等。MySQL主要负责时效性较长、数据量不大的计算结果,目前存储全站加速、网络加速、图片加速的报表数据,会对冷热数据(根据用户的查询频率)进行分离,对历史数据存入HBase,较新的数据存入MySQL。Hive和HBase主要负责时效性长、数据量大的计算结果,比如存入各种预计算的结果、中间表、长期保存的数据,包括监控数据、报表数据等。
数据服务层
数据服务层主要负责应用层的服务请求,由go语言开发,采用微服务的架构体系,Docker部署,服务不相互依赖或简单依赖,提供各种监控数据、报表服务。由于本文只注重对于平台的构建,对服务治理、服务监控等就不做过多赘述。
总结
本文详细介绍了mmTrix大数据分析平台的基本架构构建过程,基于Hadoop的大数据分析平台逐步实现mmTrix APM后端数据的存储、分析、挖掘,同时随着业务的更迭也加速驱动数据的平台化。
相关推荐
- 盲盒小程序背后的技术揭秘:如何打造个性化购物体验
-
在2025年的今天,盲盒小程序作为一种新兴的购物方式,正以其独特的魅力和个性化体验吸引着越来越多的消费者。这种将线上购物与盲盒概念相结合的应用,不仅为消费者带来了未知的惊喜,还通过一系列技术手段实现了...
- 小程序·云开发已支持单日亿级调用量,接口可用率高达99.99%
-
2019-10-1914:1210月19日,由腾讯云与微信小程序团队联合举办的“小程序·云开发”技术峰会在北京召开。会上,微信小程序团队相关负责人表示“小程序·云开发”系统架构已经支持每天亿级别的...
- 程序员副业开启模式:8个GitHub上可以赚钱的小程序
-
前言开源项目作者:JackonYang今天推荐的这个项目是「list-of-wechat-mini-program-list」,开源微信小程序列表的列表、有赚钱能力的小程序开源代码。这个项目分为两部分...
- 深度科普:盲盒小程序开发的底层逻辑
-
在当下的数字化浪潮中,盲盒小程序以其独特的趣味性和互动性,吸引着众多消费者的目光。无论是热衷于收集玩偶的年轻人,还是享受拆盒惊喜的上班族,都对盲盒小程序情有独钟。那么,这种备受欢迎的盲盒小程序,其开发...
- 微信小程序的制作步骤
-
SaaS小程序制作平台,作为数字化转型时代下的创新产物,不仅将易用性置于设计的核心位置,让非技术背景的用户也能轻松上手,快速制作出功能丰富、界面精美的小程序,更在性能和稳定性方面投入了大量精力,以确保...
- 携程开源--小程序构建工具,三分钟搞定
-
前言今天推荐的这个项目是「wean」,一个小程序构建打包工具。在wean之前,大量小程序工具使用webpack进行打包,各种loader、plugin导致整个开发链路变长。wean旨在解...
- 校园小程序的搭建以及营收模式校园外卖程序校园跑腿校园圈子系统
-
校园小程序的架构设计主要包括云端架构和本地架构两部分。云端架构方面,采用Serverless架构可以降低技术门槛,通过阿里云、腾讯云等平台提供的云服务,可以实现弹性扩容和快速部署。例如,使用云数据库、...
- 盲盒小程序开发揭秘:技术架构与实现原理全解析
-
在2025年的今天,盲盒小程序作为一种结合了线上购物与趣味性的创新应用,正受到越来越多用户的喜爱。其背后的技术架构与实现原理,对于想要了解或涉足这一领域的人来说,无疑充满了神秘与吸引力。本文将为大家科...
- 月活百万的小程序架构设计:流量暴增秘籍
-
从小程序到"大"程序的蜕变之路当你的小程序用户量从几千跃升至百万级别时,原有的架构就像一件不合身的衣服,处处紧绷。这个阶段最常遇到的噩梦就是服务器崩溃、接口超时、数据丢失。想象一下,在...
- 认知智能如何与产业结合?专家学者共探理论框架与落地实践
-
当前,以大模型为代表的生成式人工智能等前沿技术加速迭代,如何将认知智能与产业结合,成为摆在各行各业面前的一个问题。论坛现场。主办方供图7月4日,2024世界人工智能大会暨人工智能全球治理高级别会议在...
- 现代中医理论框架
-
...
- 认知行为(CBT)中的ABC情绪理论
-
情绪ABC理论是由美国心理学家阿尔伯特·艾利斯(AlbertEllis1913-2007)创建的理论,A表示诱发性事件(Activatingevent),B表示个体针对此诱发性事件产生的一些信...
- 说说卡伦霍妮的理论框架,对你调整性格和人际关系,价值很大
-
01自在今天我主要想说下霍妮的理论框架。主要说三本书,第一本是《我们时代的神经症人格》,第二本是《我们内心的冲突》,第三本是《神经症与人的成长》。根据我的经验,三本书价值巨大,但并不是每个人都能读进去...
- 供应链管理-理论框架
-
一个最佳价值的供应链,应该是一个具有敏捷性、适应性和联盟功能(3A)的供应链,其基本要素包括战略资源、物流管理、关系管理以及信息系统,目标是实现速度、质量、成本、柔性的竞争优势。篇幅有...
- 微信WeUI设计规范文件下载及使用方法
-
来人人都是产品经理【起点学院】,BAT实战派产品总监手把手系统带你学产品、学运营。WeUI是一套同微信原生视觉体验一致的基础样式库,由微信官方设计团队为微信Web开发量身设计,可以令用户的使用感知...
你 发表评论:
欢迎- 一周热门
- 最近发表
- 标签列表
-
- MVC框架 (46)
- spring框架 (46)
- 框架图 (58)
- bootstrap框架 (43)
- flask框架 (53)
- quartz框架 (51)
- abp框架 (47)
- jpa框架 (47)
- laravel框架 (46)
- express框架 (43)
- scrapy框架 (52)
- beego框架 (42)
- java框架spring (43)
- grpc框架 (55)
- 前端框架bootstrap (42)
- orm框架有哪些 (43)
- ppt框架 (48)
- 内联框架 (52)
- winform框架 (46)
- gui框架 (44)
- cad怎么画框架 (58)
- ps怎么画框架 (47)
- ssm框架实现登录注册 (49)
- oracle字符串长度 (48)
- oracle提交事务 (47)